EKATO HIGH PERFORMANCE IMPELLERS

	VISCOPROP	ISOJET	ISOJET-B	COMBIJET	PHASEJET	GASJET	INTERMIG	PARAVISC	COAXIAL	TORUSJET
IMPELLER TYPE	Central / off center Baffles: 0 / 2 / 3 / 4 Blades: 2 / 3 / 4 Stages: 1 – x	Central / off center Baffles: 2 / 4 Blades: 2 Stages: 1 – x	Central Baffles: 2/4 Blades: 4 Stages: 1 – x	Central Baffles: 2/4 Blades: 3 Stages: 1 – x	Central Baffles: 2/4 Blades: 6 Stages: 1/2	Central Baffles: 2/4 alone or combined with PHASEJET or VISCOPROP	Central Baffles: 2/4 Blades: 2/3/4 Stages: 2	Central 2 baffles or feed pipes in the center applicable Blades: 2	Central Two different shaft speeds / directions of wall and center impellers possible Stages: 1 / 2	Central / draft tube Baffles: 3 / 5 Blades: 3 / 4 / 5 Stages: 1
FLOW DIRECTION	Axial / radial	Axial	Axial	Radial / axial	Radial	Radial	Axial / radial	Axial / positive displacement	Axial / radial / positive displacement	Axial
PREFERRED ARRANGEMENT										
BLENDING	• • •	• • •	• • •	• •	•		• •	• • •	• • •	• •
SUSPENDING	• • •	• • •	• •	• •	•		• •		•	• • •
DISPERSING	•	•					•		• • •	
HEAT TRANSFER	• •	• •	• •	• • •	• • •	• •	• •	• • •	• • •	• • •
GASSING	•		•	• • •	• • •	• • •	• •			
FLOW RANGE	Turbulent / transitional / laminar	Turbulent	Turbulent / transitional / laminar	Turbulent	Turbulent	Turbulent	Turbulent / transitional / laminar	Laminar	Turbulent / transitional / laminar	Turbulent / transitional
VISCOSITY RANGE	\leq 40,000 [mPas]	\leq 20,000 [mPas]	≤ 100,000 [mPas]	≤ 10,000 [mPas]	≤ 10,000 [mPas]	\leq 2,000 [mPas]	\leq 20,000 [mPas]	≤ 1,000,000 [mPas]	\leq 1,000,000 [mPas]	\leq 100,000 [mPas]
FEATURES	 Universal mixing impeller for a wide viscosity range Variable blade angles (standard versions with 25° and 53°) 	 Homogeneous suspension Excellent axial pumping rates High axial velocities can create a virtual draft tube by a multistage setup 	 Low shear mixing Homogeneous energy dissipation Reliable suspending even under gassed conditions 	 High local shear rates Combines strong radial and axial flows Very good gas dispersion High flooding limit, stable operation with respect to power consumption 	 Primary gas disperser with gas pipe or sparger ring Strong dispersion performance even at high gas flow rates Almost no reduction of power under gassing conditions 	 Self-induced gassing through hollow shaft Combined with PHASEJET or VISCOPROP in high perfor- mance gas-liquid reactors Very high mass transfer Complete conversion of the gas 	 Homogeneous supension Homogeneous energy distribution Gassing of non-Newtonian fluids 	 Short mixing times for high viscous and non-Newtonian fluids Both pumping directions possible Ideal for mixing low to high viscous process stages 	 Ideal for multi-purpose plants Highly flexible modular system Complex mixing tasks Blending and heat transfer in non-Newtonian fluids 	 Application with draft in the vessel Efficient axial pumpin High circulation rates power consumption
APPLICATIONS	Polymerization (suspension / pearl / emulsion), leaching, crystallization, precipitation, storage tanks	Polymerization (suspension), crystallization, precipitation	Bio-leaching, fermentation, polymerization, precipitation, crystallization	Fermentation, bio-leaching, atmospheric leaching	Fermentation, hydrogenation, oxidation, alkoxylation, hydroformulation, carboxylation	Hydrogenation, chlorination, oxidation, alkoxylation, amination, carboxylation	Fermentation, crystallization, resin emulsions	High viscous adhesives, polymerization (bulk / solution), rubbers, creams, mascara, sealants, grease, ointments, etc.	Applications with extreme non-Newton characteristics, polymerization (bulk / solution), resin emulsions, mascara, pastes	Continuous crystallizati polycondensation, low temperature application polymerization (solution
INDUSTRIES	Formulated consumer products, chemicals, polymers, flue gas desulfurization & water treat- ment, biofuels & bio refineries, minerals processing	Chemicals, API production, polymers, consumer goods	Hydrometallurgy, chemicals, polymers, biofuels & bio refineries, API production	Chemicals, biotechnology, polymers, hydrometallurgy	Chemicals, hydrometallurgy, pharmaceuticals, food	Chemicals, pharmaceuticals, hydrometallurgy	Chemicals, biotechnology	Food, cosmetic, polymers (e.g. polyolefins), paints and lacquers, pharmaceuticals, formulated products	Formulated products, cosmetics, pharmaceuticals, polymers	Chemicals, hydrometall polymers
DIAMETER RATIO	0.3 – 0.7 [d ₁ /d ₂]	0.05 – 0.5 [d ₁ /d ₂]	0.3 – 0.96 [d ₁ /d ₂]	0.2 – 0.7 [d ₁ /d ₂]	0.2 – 0.6 [d ₁ /d ₂]	0.2 – 0.5 [d ₁ /d ₂]	0.3 – 0.95 [d ₁ /d ₂]	0.9 – 0.98 [d ₁ /d ₂]	$0.9 - 0.98 / 0.3 - 0.5 [d_1/d_2]$	0.95 - 0.98 [d ₁ /d ₂]
SPEED	Medium	High	Medium	High	High	High	Medium	Low	Low / high	High
TIP SPEED	3 – 10 [m/s]	4 – 15 [m/s]	3 - 10 [m/s]	4 – 15 [m/s]	4 - 15 [m/s]	8 – 15 [m/s]	1 – 9 [m/s]	< 2 [m/s]	< 2 / 5 - 30 [m/s]	2 – 15 [m/s]
								¥ The imp	eller selection and the areas of oper	ation may differ for indivi

EKATO SPECIAL IMPELLERS

DISSOLVER CERAMIC

Application of high shear for dissolving or disagglomeration purpose or establishing emulsions (stable droplet sizes)

EPOX-R

A wear-optimized impeller which is ideal for use in pressure oxidation autoclaves (hydrometallurgy)

EPAL

Designed for continuously operating horizontal vessels (e.g. leaching autoclaves)

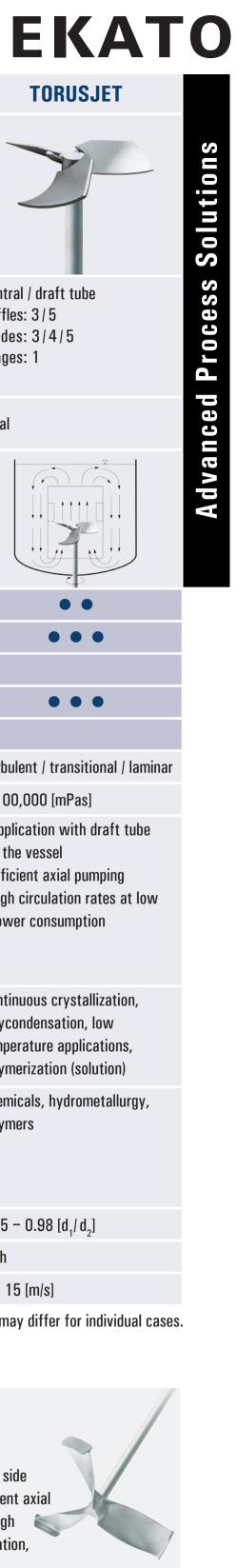
ISOPAS

Impeller for mixing and drying of products with a wide range of flow properties

 \star The impeller selection and the areas of operation may differ for individual cases.

HELICAL RIBBON

Impeller for high-viscous media and low-shear applications, special applications in emulsion polymerization


SOLIDFOIL

Perfect handling of continuously flowing solids, e.g. stripping monomer residues from polymers

WINGJET

A wear-optimized impeller for side entry agitators with an excellent axial flow and dispersion of very high gas rates (flue gas desulfurization, storage tanks)

www.ekato.com

